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Abstract. We study an (m. n) superlattice consisting of two alternating magnetic materials 
(components) of m and n atomic layers, respectively. The superlanice is modelled by a 
simple cubic lattice of spins coupled via nearest-neighbour exchange (Heisenberg model). Using 
recurrence relations, the dispersion equations of surface and bulk spin w a y s  axe derived for 
both finite and semi-infinite systems. The numerical results of the (1, I), (3, 1) and (3, 2) c s e s  
ax shown graphically. For a range of the surface exchange 3,. the maximum number of surface 
modes, equal to m + n, is obtained. 

1. Introduction 

Superlattices of excellent quality can nowadays be synthesized, following the advances in 
sputtering [1,2J and epitaxial [3-51 techniques. The superlattice may possess new physical 
properties which are very different from those of their component materials 161. We can 
design the superlattices that we need with the aid of theoretical studies. These factors have 
aroused great interest in superlattice materials in recent years. 

As regards spin excitations, there have been many theoretical studies of the spin wave 
dispersion in the long-wavelength or magnetostatic limit [7-111. In the short-wavelength 
limit, where the exchange coupling is dominant, comparatively fewer studies have been 
done. Several different techniques have been developed for the exchangedominated spin 
waves, including the Green function method [12], the interface rescaling technique 1131 and 
the transfer matrix formalism 114-161. 

In this paper, we stndy a semi-infinite and a finite stack of two different ferromagnetic 
films by the method of recurrence relations. This method was first developed for electron 
T a "  state problems 1171 and has been used for magnetostatic modes [ll].  The superlattice 
is modelled by a simple cubic lattice of spins coupled via nearest-neighbour exchange 
(Heisenberg model). We obtain the dispersions for both semi-infinite and finite structures 
with one surface layer modification. We also find that the maximum number of surface 
modes in a semi-infinite superlattice is equal to the atomic layer number m + n of a 
superlattice unit. We also obtain the range of Js when there are m + n surface modes, 
and when all the surface modes disappear. 

Some of our results are equivalent to those obtained for finite and infinite.systems by 
Bamas [15,16] in the transfer matrix formalism. In our calculation, the recurrence relations 
are used and solved for each of the atomic layers in one component, as well as from one 
superlattice unit to another. In 115, 161, only the eigenvalue value results for the superlattice 
unit matrix are solved. Hence OUT results are more general for arbitrary and large m and 
n. In earlier work also, there has been no discussion of how the number of surface modes 
changes with the surface exchange .Is. 
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2. Recurmace relations for (m, n) superlattices in the Heisenberg model 

We consider here the following Heisenberg Hamiltonian: 

Feng Chen and H K Sy 

where Jij represents the exchange couplings between the spins Si and Sj of the nearest 
neighbours. BO is an applied magnetic field in the superlattice z direction (see figure 1). 

From this Hamiltonian, we  can obtain the coupled equations [14-161 for SI (spin operator 
for the Zth layer): 

(2) 

where A = 1 - $cosbao) + cos (qy~) l ,  a0 is the lattice constant for the simple cubic 
structure, qx and qy are the components of the spin wave vector in the x and y directions, 
o is the angular frequency and s is the spin constant. 

The (m, n) superlattice that we consider is formed from two different ferromagnetic 
layered smctures stacked alternately: material A with m layers and material B with n 
layers. Each material A or B is characterized by its exchange interaction .Ie or Jb and spin 
constants. or sb. The constant describing the exchange interaction between interface atoms 
is J .  The elementary unit cell is indicated by k = 1.2.. . (see figure 1). 

[(U - gp.BBo)/S - $.!+I - J1.1-i -4&,1Als1 -I- Jl,f-lS;-i + $,f+iSi+i = 0 

& B A B A 

. . . . .  

Figure 1. A semi-infinite Heisenberg superlanice model. 

The coupled equations (2) for the (m. n )  superlattice can be solved by recurrence relation 
techniques [I], 171 to give 
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where 

f = sin[(k - 1)a1 fi - sin[(k - 2)al i l s ina .  (4) 

Here SA and S i  are the spins at the first and second layer, respectively, of the kth unit cell. 
I^ is the 2 x 2 unit matrix, and 

(5) 

ForIbl t 1,coshb = lbl,andonereplacessin(ka)bysinh(kA)forb t 1 and(-l)ksinh(kb) 
forb < -1. 

1 cosa = b = 2(N++ + N--)  for Ibl < 1. 

fi = ( N t t  N + - )  = (B++ B+-) (A++ A+-) 
N-+ N-- B-+ B-- A-, A-- 
J, 
J 
J. 
J 

A++ = - [sin[(m - l)&] - 2f, sin[(m - 2)@,]] /sin& 

At- = - [2fa sin[(m - I)&] - sin[(m - 2)0,]] /sine, 

(7) 

(8) 

1 
1 

A-+= [(L -4f=fb~)s in i (m-~)e~1+2fb-s in [ (m-3)e=1  Ja . /sine, 

sin[(m - 1)6',,] - 2fb- sm[(m - 2)eJ /sin& 

Jb J 
Ja . 
J 

cos 0. = b. = -(o - gpB BO - 2s. J. - 4s. J, A)/2s, J. 
fa = -(U - g/lgBg - S, J. - S, 3 - 4 ~ ,  JaA)/Ba J.. 

B++, B+-, E-+, E- ,  cos@, bb and fb can be obtained by replacing all subscripts a in 
(7) and (8) by b, b by a and m by n. 

The above equations (7) and (8) are also written for lbaI < 1, lbbl < 1. For 1b.l t 1, 
lbbl t 1, the hyperbolic equivalents as in (5) must be used. 

3. Surface modes in a semi-infinite superlattice 

We next study a semi-infinite system terminated by m A-material layers. All the exchange 
constants are the same except that the surface layer has the intralayer exchange Js. To study 
the possible existence of surface modes for this semi-infinite system (figure l), we need 
only replace [ll, 171 

by f e-A and hence Skq.,/Skp by f e-A. (9) 
sinh(k - 2)b ' sinh(k - l)A 

Applying equations (3) and (9) for the last two unit cells, we get 

Sr-7 = N + + S r "  + N+-ST"-' = fS"+" -A 

sm+n-l = ~ - + s ; + n  + ~ - - s , m t n - l  - *Sm+n-l -A (10) 

Using the above equation (lo), together with the coupled equations for the surface layer 
given by 

k e  

k e .  - k-I 
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we get the equations for the surface modes, as follows: 
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fs N+- f N++ ‘f 
coshh = &!j(N++ + N--). 

= 0 

Equations (12) are similar to those obtained in [15,16]. In [15, 161, however, the explicit 
expressions of fi for general m, n are not given (equation (6)). 

In the special case of m = n = 1, and sa = Sb = s, = s, equations (12) reduce to 

where 

Equation (13) is a quadratic equation in 0. It has at most two solutions. By detailed 
studies of the equation, we can determine how the number of surface modes changes with 
J, algebraically; we find that, under the following conditions, two surface modes appear: 

D < 0, E > 0 I D > 0, E > 0 
for Jn ). Jb 
for Ja < Jb 

where 

D = 4(J, - Ja)A - J 

E=4(J , -  Ja)(2Js- J,-Jb)A-(4Js-3Jo-Jb)J. 
(15) 

On the other hand, only one surface mode exists when the following conditions hold 

D < O ,  E<OOrD>O,  E > O  f o r & > &  (164 I 0 4 0 ,  E > O o r D > O ,  E < O  f o r & < & .  (16b) 

An example of the case J. > Jb is shown in figure 2 for J, = 2, Jb = 1, J = 1.5 
and A = 2. The number of surface spin waves (SSWs) as a function of J, is shown in 
figure 2(a). The numerical values are obtained from equations (15) and (16). The results 
show that all surface modes disappear only in the range 2.19 < Js < 2.25. 

Figure 2(b) shows the dispersion relation for the maximum case of two surface modes 
with Js = 1.2. Mode A is an optical wave, and mode B is an acoustic wave. For large A, 
mode A is localized at the surface layer and mode B’s peak is at the second atomic layer 
from the surface (figure 2(c)). 

From figure 2(b), we can also see clearly how the surface modes change with Js. When 
J, < 1.63, mode B is under the two bulk bands, and mode A is in the gap between two 
bands. With increasing J,, the two surface modes move upwards. When J, = 1.63, mode 
B reaches the bottom of the lower band and disappears first; only mode A is left. When 



A Heisenberg model of a two-component magnetic superlanice 6595 

I .  = 1  1.63 3.=Z 2.19 225 

0.0 0.5 1.0 1.5 

(4 Jb 3. Jb J. Ja J a = 2 J , = 1 J  

< z  

...... 

Figure 2 (a) Number of surface modes for a (1, 1) superlaltice as a function of 3, for 
3. = 2. Jb = 1 ,  J = 1.5 and A = 2. (b) The two surface modes for JS = 1.2 and 
6, = (0- gp&)l&.S.; 0, optical, a, acoustic. The bulk bands are shown as shaded areas. (e) 
The spin amplitudes for ule two surface modes (A = 2). 
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Figure 3. (a) Number of surface modes a5 a function of 3, for J. = 1, 3b = 2, 3 = 1.5 and 
A = 2. (b) The WO surface modes for 3, = 2.4. (c)  The spin amplitudes for the two surface 
modes (A = 2). 
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Js = 2.19, mode A reaches the bottom of the upper band and disappears also. From 
Js = 2.19, no SSW exists until Js = 2.25, when mode A appears above the upper band. 

As an example of the Ja < Jb case, we choose J. = 1, Jb = 2, J = 1.5, A = 2. The 
number of SSWs as a function of Js is shown in figure 3(a). In figure 3(b), we have shown 
the maximum case of two SSWs with Js = 2.4. Mode C is an acoustic wave, and mode 
D is an optical wave. For large A, mode C is localized at the surface layer, and mode D’s 
peak is at the second atomic layer (figure 3(c)). 

With decrease in J,, the two surface modes (C and D) move downwards (figure 3(b)). 
When .Is = 1.75, mode C reaches the top of the upper band and disappears. After that only 
mode D is left. When J, = 1.19, mode D reaches the top of the lower band and disappears. 
At Js = 1.13, it appears again below the lower band. 

For a general case with m layers of material A and n layers of B, the maximum number 
of surface modes is m+ n. These are localized at each of the m + n layers of the surface 
superlattice unit. However, with larger m and n, the range of Jx in which all m + n surface 
modes appear at the same time becomes much smaller. The condition can be obtained 
by solving numerically dispersion equation (12). For a (1, 3) superlattice, there are four 
surface modes for the following choice of exchange constants: Jn = 2, Jb = 1, J = 1.5 
and Js = 1.0. These are shown in figure 4. 

0.0 0.5 1 .o 1.5 2.0 
A 

Figure 4. The four surface modes for a (1, 3) superlattice with 
J, = 1.0. 

J, = 2, Jb = 1, J = 1.5 and 

4. Surface and bulk modes in a finite superlattice 

We next consider a finite superlattice (figure 5). the two ends of which are A layers with 
the modification Js to the outermost layers. 
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A 

3. 

...... 

Using the recurrence relations as in (3). and the coupled equations for the two surface 
layers as in (1 l), we can easily obtain the dispersion equations for the [k x m, (k - 1) x n ]  
finite superlattice: 

f R - -  + f,(R-+ - R+-) - R++ = 0 (17) 

where 
* *  

R E S T  

1 -sin[(m - 3)O.l sin[(m - 2)O.l 
-sin[@ - 2)O.l sin[@ - l)O,l 

and f is given by equation (4). 
Equations (17H19) are equivalent to the results in [16] for finite k. However, in our 

results, explicit expressions of f for general m and n are given by solving the recurrence 
equations for each component (in equations (4) and (6)). 

As an example, we have chosen a 
(3 x 3, 2 x 2)  superlattice of m = 3, n = 2 with J, = 1, Jb = 2, J = 1.5 and Js = 1.5. 
The dispersion curves are shown in figure 6, together with the five bulk bands. There &e 
13 spin waves. Spin waves (2.3). (5.6) and IS, 9) appear as three pairs of surface modes 
associated with the three surface A layers. Because of the finite superlattice thickness, there 
is coupling within each pair, and the pair becomes non-degenerate for small A. The highest 
two modes 12 and 13 are very close, and cannot be resolved on the graph. 

The method that we have used in this paper can be generalized to other structures. In 
the semi-infinite case (figure I), we can introduce other kinds of surface modification. For 
example, if we modify more than one layer, we shall need more (and different) equations 
of the type of equation (11). 

Similarly, in studying the finite systems, we have only discussed the case in which there 
are exactly m additional A layers with the same surface exchange J, at both ends. E we 

Equation (17) must be solved numerically. 
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0.0 y 
0.0 0.5 i .O 1.5 2.0 

A 
Pi- 6. The 13 spin waves for a (3 x 3 .2  x 2) finite superlanice with Jo = 1. Jb = 2, J = 1.5 
and Js = 1.5. 

allow the two surface exchange constants to be different, equation (17) will be modified. If 
we allow other types (or numbers) of additional A layer, the matrix .? (equations (18) and 
(19)) will be changed. 

We expect more fabrication of superlattices with two types of ferromagnetic material, 
like that studied in this paper. The different surface and bulk spin waves that we obtain can 
be observed by Brillouin scamring experiments such as in [IS, 191. 
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